IEEE P802.3cw D2.5 400 Gb/s over DWDM systems 5th Working Group recirculation ballot comments

Cl 116 SC 116.1.3 P 27 L 22 # 20419
Dawe, Piers Nvidia

Comment Type TR Comment Status R
The manipulations described in this draft don't describe a BASE-R "native Ethernet"; rather, they are like 10GBASE-W. An Ethernet signal is packed into a telecoms wrapper (then, based on SONET, here, based on OTN).
The combination is clumsy and messy. Starting from Ethernet building blocks, one would not engineer it like this. I understand that the rationale is because those designs were already there, and the cost of a clean design was thought to outweigh the inefficiencies of this scheme. But that calls "broad market potential" into question. 800G coherent will affect the market for this.

Suggested Remedy
I can think of three options:

Redo Clause 155, leaving out GMP and FAW and simplifying the training sequence and pilot sequence to make an Ethernet PHY;

Cancel this project, and encourage those interested to feed their learnings into OIF's "400ZR" maintenance;

Rename this PHY to 400GBASE-ZW, which is more honest and leaves the "400GBASE-ZR" name available to any future native Ethernet PHY, should the broad market potential be found.

Response Response Status U
REJECT.

No consensus within the CRG to change the name of the 400GBASE-ZR PHY

Cl 116 SC 116.1.3 P 33 L 12 # 21280
Dawe, Piers Nvidia

Comment Type TR Comment Status R
As is made clear by the non-BASE-R Table 116-5a and 116.4.3 and 116.4.4, "400GBASE-ZR" is not BASE-R. However, the "R in the name implies that it is, which causes confusion. Clause 155 describes a "WAN PHY" like 10GBASE-W: an Ethernet signal is carried in a telecoms wrapper (then, based on SONET, here, based on OTN). Also, misnaming this spec blocks the way for a future native BASE-R 400G Z class PHY. The name "400GBASE-ZW", while correct, doesn't flow very easily, but "400GBASE-Z" avoids the misrepresentation and provides a cleaner name.

Suggested Remedy
Change *400GBASE-ZR* to *400GBASE-Z* throughout.

Response Response Status U
REJECT.

Changing the name from 400GBASE-ZR was previously considered in D2.0 comment #419 (https://www.ieee802.org/3/cw/comments/D2p0/8023cw_D2p0_comments_final_by_clause.pdf) and there was no consensus to make a change.

The comment does not provide sufficient justification to support the suggested remedy.

There was no consensus to make a change.
IEEE P802.3cw D2.5 400 Gb/s over DWDM systems 5th Working Group recirculation ballot comments

This PCS/PMA is over-complicated and messy. We would not engineer it like this now (see nicholl_3dj_optx_01_230413 for a small step in the right direction, and maniloff_3dj_01a_2303 for an example of how to do coherent cleanly). OIF's so-called "400ZR" has had a draft since 2018, was issued in 2020 and revised last year. 800G coherent is coming in OIF and P802.3dj, which will take much of the market away. This P802.3cw project is on about its ninth draft and still the actual specifications are vague and incomplete, the previous draft was issued 8 months ago; not the usual two-monthly cadence we expect from an active project and an enthusiastic group. The moment for doing this spec in 802.3 has passed, it doesn't add significantly to 400ZR, and I observe there are not enough active participants in P802.3cw to justify it.

SuggestedRemedy
Cancel this project.
Encourage those interested to feed their learnings into OIF's "400ZR" maintenance.
Re-use relevant parts of the draft in P802.3dj when the time comes.

Response
REJECT.

In the D2.0 review, 582 comments from 22 commentors were received which shows continued interest in the project.

In the D2.1 review, 290 comments from 13 commentors were received which shows continued interest in the project.

No consensus to cancel the project at this time.
IEEE P802.3cw D2.5 400 Gb/s over DWDM systems 5th Working Group recirculation ballot comments

Daw, Piers Nvidia

Cl 155 SC 155 P 42 L 4 # 2318

Comment Type TR Comment Status R

D2.1 comment 278: this project is too slow, and has descended to only 25 comments from only four commenters when there is a lot to fix still. The moment for doing this spec in 802.3 has passed, it doesn't add significantly to 400ZR, it lacks momentum and there are not enough willing participants in P802.3cw to justify it.

SuggestedRemedy
Cancel this project.
Encourage those interested to feed their learnings into OIF's "400ZR" maintenance.
Re-use relevant parts of the draft in P802.3dj when the time comes.

Response Response Status U

As noted by commentor, this issue was previously raised in D2.1 comment #278 and there was no consensus to cancel the project.

REJECT.

Per Motion #1 from https://www.ieee802.org/3/cw/public/23_06/minutes_3cw_2306_approved.pdf the modified project timeline was approved. See https://www.ieee802.org/3/cw/proj_doc/timeline_3cw_230608.pdf

This plan of action was presented to the 802.3 WG at the July 2023 Plenary. See Slide #3 of https://www.ieee802.org/3/minutes/jul23/0723_3cw_open_report.pdf

There is no consensus to change this plan of action at this time.

Dawe, Piers Nvidia

Cl 155 SC 155 P 42 L 4 # 2318

Comment Type TR Comment Status R

D2.1 comment 281: this PCS/PMA is way too complicated for just a "directive" specification. We need examples, as in Annex 91A, RS-FEC codeword examples, or Annex 76A, FEC Encoding example, or the OIF test vectors for 400ZR.

SuggestedRemedy
Publish examples of e.g. FEC and other blocks before and after coding. Smallish ones can go in the document, all can be uploaded to the directory that IEEE provides for these things.
If no-one does the work needed, cancel the project.

Response Response Status U

As noted by commentor, this issue was previously raised in D2.1 comment #281 which was rejected with the response "No data was provided for the editors to be able to implement this change. Contributions of such material would be welcomed."

REJECT.
Cl 155 SC 155 P 42 L 4 # 23

Comment Type: TR
Comment Status: R
Dawe, Piers
Nvidia

Comment:

sluyski_3cw_01a_220328.pdf said

Other Standards Organizations that have specified and released 400G 16QAM specifications with demonstrated interoperability by:

- Identifying a common set(s) of Test vectors and test methodologies.
- Agreeing with unsatisfied comments 20427, 21281 and 2318: this over-complicated PCS/PMA needs examples, as in Annex 91A, RS-FEC codeword examples, or Annex 76A, FEC Encoding example, or the OIF test vectors for 400ZR, or P802.3df Annex 172A.

Suggested Remedy:

Either:

- Add the codeword examples / test vectors as needed to get to a complete draft,
- Or, don't, and cancel the project.

Response:

Response Status: U

REJECT.

This comment is restatement of previous comments 20427, 21281 and 2318, does not provide substantive additional rationale and does not provide the editors instructions on how to modify the draft. As noted in the comment, this issue has been raised and was rejected 3 previous times. See https://www.ieee802.org/3/cw/comments/D2p4/8023cw_D2p4_comments_final_unsatisfied_by_ID.pdf. Contributions were encouraged but none have been received.

Cl 155 SC 155.1.5 P 35 L 1 # 20427

Comment Type: TR
Comment Status: R
Dawe, Piers
Nvidia

Comment:

This PCS is too complicated for just a "directive" specification. We need examples.

Suggested Remedy:

Create examples of e.g. FEC and other blocks before and after coding. Smallish ones can go in the document, all can be uploaded to the directory that IEEE provides for these things. They might need to cover some of the PMA.

Response:

Response Status: U

REJECT.

A detailed suggested remedy containing an editor's instruction on how to modify the draft was not provided.

The following straw poll was taken:

I would support rejecting comment #427

Yes - 10

N - 2

Cl 155 SC 155.2.4.11 P 44 L 36 # 20463

Comment Type: TR
Comment Status: R
Dawe, Piers
Nvidia

Comment:

generic operation ... in ITU-T G.709.3 Annex D: but that contains undefined symbols and terms.

Suggested Remedy:

As it seems it is not very long, write it out cleanly here

Response:

Response Status: U

REJECT.

No consensus to make a change.
Comment Type: TR/technical required
Response Status: U

As in unsatisfied comments 20463 and 2338: this says "The generic operation of the Hamming encoder is specified in ITU-T G.709.3 Annex D". Generic is not adequate; we need a complete and unambiguous specification. G.709.3 Annex D is one page long. Unfortunately, it relies on undefined items that look like s, \(\wedge \), V and overbar, so it does not specify. Also it is not clear what they mean by matrix multiplication, for example.

Suggested Remedy
Write out the relevant material, similar to what 400ZR has done, defining all the terms and symbols in the usual way for equations, and correcting any mistakes. Of course, write it so that 119-bit message \(m \) (instead of \(b \)) is encoded to 128-bit codeword \(c \).

Response: REJECT.

This comment is restatement of previous comments 20463 and 2338, does not provide substantive additional rationale and does not provide the editors instructions on how to modify the draft. As noted in the comment, this issue has been raised and was rejected 2 previous times. See https://www.ieee802.org/3/cw/comments/D2p4/8023cw_D2p4_comments_final_unsatisfied_by_ID.pdf.

Comment Type: TR/technical required
Response Status: U

D2.0 comment 463: generic operation ... in ITU-T G.709.3 Annex D: but that contains undefined symbols and terms. As it seems it is not very long, write it out cleanly here. This is supposed to be a spec, we need a specific definition, not "generic". G.709.3 Annex D describes GMP (as referenced in 155.2.5.3), not the Hamming SD-FEC scheme. Also, G.709.3 is in revision. 400ZR 10.5. Inner Hamming Code, which is about one page long, specifically addresses a systematic (128, 119) double-extended Hamming code.

Suggested Remedy
Copy the material from 400ZR 10.5, changing some of the \(b \) to \(m \) if appropriate to match the usual FEC notation in 802.3, and replacing the undefined symbols that look like \(\wedge \) and V with the ones usually used in 802.3. Whatever symbols are used, say what they mean.

Response: REJECT.

As noted by commentor, this issue was previously raised in D2.0 comment #463 which was rejected with the response "No consensus to make a change." https://www.ieee802.org/3/cw/comments/D2p0/8023cw_D2p0_comments_final_by_ID.pdf. ITU G.709.3 has been amended in November 2022, but there were no changes to Annex D.

Comment Type: TR/technical required
Response Status: U

Unsatisfied comments 20427, 21281 and 2318: this over-complicated PCS/PMA needs examples, as in Annex 91A, RS-FEC codeword examples, or Annex 76A, FEC Encoding example, or the OIF test vectors for 400ZR, or P802.3df Annex 172A. Even this comparatively simple systematic double-extended Hamming encoder has opportunities for ambiguity and misunderstanding.

Suggested Remedy
Add tables for \(g \), H, B, P and G, and an example of \(c \) and \(m \).

Response: REJECT.

This comment is restatement of previous comments 20427, 21281 and 2318, does not provide substantive additional rationale and does not provide the editors instructions on how to modify the draft. As noted in the comment, this issue has been raised and was rejected 3 previous times. See https://www.ieee802.org/3/cw/comments/D2p4/8023cw_D2p4_comments_final_unsatisfied_by_ID.pdf. Contributions were encouraged but none have been received.
<table>
<thead>
<tr>
<th>Cl 156</th>
<th>SC 156.9</th>
<th>P 97</th>
<th>L 12</th>
<th># 21285</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dawe, Piers</td>
<td>Nvidia</td>
<td>Comment Type: TR</td>
<td>Comment Status: R</td>
<td>Comment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cl 156</th>
<th>SC 156.9</th>
<th>P 102</th>
<th>L 13</th>
<th># 2320</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dawe, Piers</td>
<td>Nvidia</td>
<td>Comment Type: TR</td>
<td>Comment Status: R</td>
<td>Comment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cl 156</th>
<th>SC 156.9.1</th>
<th>P 102</th>
<th>L 45</th>
<th># 2331</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dawe, Piers</td>
<td>Nvidia</td>
<td>Comment Type: TR</td>
<td>Comment Status: R</td>
<td>Comment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cl 156</th>
<th>SC 156.9.4</th>
<th>P 105</th>
<th>L 5</th>
<th># 32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dawe, Piers</td>
<td>Nvidia</td>
<td>Comment Type: TR</td>
<td>Comment Status: R</td>
<td>Comment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| | | | | | | | | It might be improvement to change "frequency" to "frequency offset" as proposed. This is not critical to address at this time, however the commenter is encouraged to resubmit this comment during SA Ballot.
This says "Laser frequency noise is measured using an unmodulated laser as specified in Table 156-11" but frequency noise is not measured directly, it is derived from a measurement of something else. This doesn’t say what is measured, or how, or how what is measured is related to frequency noise.

SuggestedRemedy

Change this spec to power spectrum or phase noise, or the missing information so that "frequency noise" is defined.

Response

REJECT. There was no consensus to make a change.

The units of frequency noise are Hz^2/Hz. No watts or dB involved. Frequency noise is not a power spectral density.

SuggestedRemedy

Change this spec to power spectrum or phase noise, or change Table 156-13--Frequency noise mask to 156-13--Frequency noise mask. Change "One-sided frequency noise power spectral density (Hz^2/Hz)" in the table and "One-sided frequency noise" in the text.

Response

REJECT. This topic was addressed in D2.4 comment #9 and was rejected with no consensus to make a change. See https://www.ieee802.org/3/cw/comments/D2p4/8023cw_D2p4_comments_final_by_ID.pdf.

The proposed change does not contain sufficient detail so that the CRG can understand the specific changes that satisfy the comment.

"One-sided" is ambiguous and does not appear in the text. It might mean that only one side is shown, and the other is the same, or it might mean that both sides are to be summed (presumably in an RMS way).

SuggestedRemedy

In the text, say which is meant.

Response

REJECT. No consensus to make a change.
The units of frequency noise are Hz^2/Hz. No watts or dB involved. So frequency noise, unlike a normal spectrum, is not a power spectral density.

The table and graph show the mask, not an actual noise frequency. The figure has both "... power spectral density" and "spectral power density".

D2.1 comments 285, optical parameters are inadequately defined, D2.4 comment 10, and other comments specifically on frequency noise.

Suggested Remedy

- Change the spec to power spectrum or phase noise, or:
- Change Table 156-13--Frequency vs spectral power density to 156-13--Frequency noise mask.
- Change "One-sided frequency noise power spectral density (Hz^2/Hz)" in the table and "One-sided frequency noise power spectral density [Hz^2/Hz]" in the figure, to "One-sided frequency noise (Hz^2/Hz)."
- Change Figure 156-8--Frequency vs spectral power density to Figure 156-8--Frequency noise mask.

Response

REJECT.

Frequency noise is defined as the power spectral density of the laser phase variations, in frequency units.
IEEE P802.3cw D2.5 400 Gb/s over DWDM systems 5th Working Group recirculation ballot comments

<table>
<thead>
<tr>
<th>CI</th>
<th>SC</th>
<th>P</th>
<th>L</th>
<th>#</th>
<th>Dawe, Piers</th>
<th>Nvidia</th>
</tr>
</thead>
<tbody>
<tr>
<td>156</td>
<td>156.9.6</td>
<td>105</td>
<td>8</td>
<td>2325</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comment Type TR **Comment Status** R

D2.1 comments 285, optical parameters are inadequately defined, and 286, define frequency noise and write down how it may be measured. For example, it is not stated what is measured in Hz^2. It is not stated adequately what to do with the two sidebands. The table column header says one-sided, but that's the wrong place to attempt a definition, and does it mean one folds both sidebands together, explicitly or as in a self-homodyne measurement, or takes the worst of the two, or what? It is not stated whether +ve and -ve frequencies are taken into account or just +ve. It seems that this extremely arcane term is more of a concept, or at most a laser modeller's input parameter, than an observable output, so it is not clear that it is the right thing to be specifying, as it may not be measurable.

Suggested Remedy

Define and specify something relevant and measurable, clearly and completely, with an explanation of how it may be measured and what instrument may be used, and references as necessary. Probably an example is needed. Phase noise is a better-known parameter with some literature, although it needs careful definition to avoid ambiguity. See e.g. IEC 61280-1-3, Fibre optic communication subsystem test procedures—Part 1-3: General communication subsystems—Central wavelength and spectral width measurement for an example of a measurement spec that can be referred to in a definition.

Response REJECT.

No consensus to make a change.

The CRG expressed interest in contributions related to laser frequency noise.

Contributions are encouraged.

<table>
<thead>
<tr>
<th>CI</th>
<th>SC</th>
<th>P</th>
<th>L</th>
<th>#</th>
<th>Dawe, Piers</th>
<th>Nvidia</th>
</tr>
</thead>
<tbody>
<tr>
<td>156</td>
<td>156.9.6</td>
<td>105</td>
<td>9</td>
<td>2336</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comment Type TR **Comment Status** R

D2.1 comments 285, optical parameters are inadequately defined, and 286, define frequency noise. The method of interpolation for the laser frequency noise mask is not specified. Figure 156-7 implies log-log interpolation but that is illustrative not normative.

Suggested Remedy

State that log-log interpolation is used to build the mask is not specified.

Response REJECT.

No consensus to make a change.

The CRG expressed interest in contributions related to laser frequency noise.

Contributions are encouraged.

<table>
<thead>
<tr>
<th>CI</th>
<th>SC</th>
<th>P</th>
<th>L</th>
<th>#</th>
<th>Dawe, Piers</th>
<th>Nvidia</th>
</tr>
</thead>
<tbody>
<tr>
<td>156</td>
<td>156.9.6</td>
<td>105</td>
<td>9</td>
<td>2328</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comment Type TR **Comment Status** R

D2.1 comments 285, optical parameters are inadequately defined, and 286, define frequency noise and write down how it may be measured. The laser frequency noise is supposed to be controlled down to less than 100 Hz. That's too vague for a spec. No indication is given of how it might be measured, but instruments that can measure GHz often don't measure kHz and below.

Suggested Remedy

Either don't say anything about frequencies lower than the spec range, or use a separate recommendation (not expected to be testable). Review whether 100 Hz is feasible or necessary, change the limit if appropriate.

Response REJECT.

No consensus to make a change.

The CRG expressed interest in contributions related to laser frequency noise.

Contributions are encouraged.
IEEE P802.3cw D2.5 400 Gb/s over DWDM systems 5th Working Group recirculation ballot comments

Cl 156 SC 156.9.6 P 105 L 9 # 2326
Dawe, Piers Nvidia

Comment Type TR Comment Status R

D2.1 comments 285, optical parameters are inadequately defined, and 286, define frequency noise. This text says "The mask frequencies are relative to the laser center frequency from "less than" 100 Hz to half the signaling rate", Table 156-13 has 10^2 to 10^9 Hz, and Figure 156-7 shows 10^2 to something indeterminate above 10^10.

SuggestedRemedy
Reconcile the frequency range for this spec, with clear and consistent lower and upper frequencies. For example, 100 Hz to 59.84375/2 = 29.921875 GHz, or 100 Hz to 30 GHz, or 100 Hz to 30.8 GHz to match the transmit spectrum.

Response Response Status U
REJECT.
No consensus to make a change.

The CRG expressed interest in contributions related to laser frequency noise.

Contributions are encouraged.

Cl 156 SC 156.9.6 P 105 L 15 # 2337
Dawe, Piers Nvidia

Comment Type TR Comment Status R

D2.1 comments 285, optical parameters are inadequately defined, and 286, define frequency noise. This says "The definition of maximum laser linewidth is provided in ITU-T G.698.2." G.698.2, 7.2.8 Maximum laser linewidth, says "The laser linewidth is defined as: The level of the white noise component of the power spectrum density of the instantaneous laser frequency multiplied by pi. " We need a definition of linewidth, not maximum laser linewidth. A power spectrum density would be in the dimensions of power per frequency, which is not inverse time, so this definition is not satisfactory as it stands.

SuggestedRemedy
Use another reference with a dimensionally correct definition, or write one for laser linewidth (not "maximum laser linewidth" here).

Response Response Status U
REJECT.
No consensus to make a change.

The CRG expressed interest in contributions related to laser frequency noise.

Contributions are encouraged.
156.9.9 says "The EVM calculation is defined in 156.10.1.2.7" and then says "EVMmax, is defined as a ratio of the root mean square (RMS) value of all the error vectors to the maximum magnitude of the "theoretical" constellation points" but 156.10.1.2.7, EVMmax calculation, says "The EVMmax calculations are defined in OIF-400ZR-02.0 ... section 20.4", which says "EVM_MAX, is defined as a ratio of the root mean square (RMS) value of all the error vectors (averaged over N symbols) to the maximum magnitude of all the "reference" constellation points" and provides formulae. There should be not two definitions of the same thing. Editorial: gratuitous comma.

Suggested Remedy
Change this text "EVMmax, is defined as a ratio of the root mean square (RMS) value of all the error vectors to the maximum magnitude of the theoretical constellation points" to "NOTE--In this clause, EVM is defined by EVMmax, which is the ratio of the root mean square (RMS) value of all the error vectors to the maximum magnitude of all the reference constellation points."

Response
REJECT.

It might be an improvement to make the changes proposed. This is not critical to address at this time, however the commenter is encouraged to resubmit this comment during SA Ballot.

Comment
This says "I-Q amplitude imbalance (mean)" but there is no indication of what should be averaged, nor any reference to a definition. Also it is not stated whether the I and Q amplitudes include the offsets found in 156.9.11. The response to D2.4 comment 8 improved this text but not enough. D2.1 comments 285, optical parameters are inadequately defined.

Suggested Remedy
Write out clearly and completely what is meant by "I-Q amplitude imbalance (mean)", and indicate how it might be measured.

Response
REJECT.

The current text could be improved to indicate how the phase error and the local oscillator is defined. This is not critical to address at this time, however the commenter is encouraged to resubmit this comment during SA Ballot.

Comment
This says "measured relative to local oscillator" but no local oscillator has been introduced. There is one in EVM, but the draft does not make any connection between I-Q phase error magnitude and EVM. Also, I would expect that I-Q phase error magnitude would be abs (I phase - Q phase - 90 degrees), and would not rely on a local oscillator, except as a smoothing or averaging method in the measurement (see another comment). Or it could be defined as max (I phase - best fit), (Q phase - best fit - 90 degrees) which would be about half the first definition, but doesn't go well with the name "I-Q"...

Suggested Remedy
Write out clearly and completely what is meant by "I-Q phase error magnitude (max)", and indicate how it might be measured.

Response
REJECT.
<table>
<thead>
<tr>
<th>CI</th>
<th>SC</th>
<th>P</th>
<th>L</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>156</td>
<td>156.9.15</td>
<td>108</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>156</td>
<td>156.9.26</td>
<td>110</td>
<td>44</td>
<td>5</td>
</tr>
</tbody>
</table>

Dawe, Piers Nvidia

Comment Type: TR
Comment Status: R

This and 156.9.16 say "in the range of the *central* frequency plus and minus the maximum spectral excursion as defined in OIF-400ZR-02.0, Implementation Agreement 400ZR section 13.4.2." 400ZR says "32 GHz ... Measured between the *nominal* central frequency of the channel and the -3.0dB points of the transmitter spectrum furthest from the nominal central frequency measured at point Ss. Includes Laser frequency accuracy (13.1.200) error value from nominal center frequency." 156.9.2 has "Optical *center* frequency" (vs. central) 156.9.6 has "Offset between the *carrier* and the *nominal center frequency*" 156.9.17 has within /outside of "the signal's" -20 dB spectral mask points Figure 156-7 shows an upper mask -20 dB point at 40.4 GHz and the lower mask crosses -20 dB, at about 31 GHz which is much nearer the OIF number. D2.1 comments 285, optical parameters are inadequately defined.

Suggested Remedy

Use consistent names. Throughout 156.7 and 156.9, change "the carrier" and "central frequency" to "center frequency" (or "transmitter center frequency" if necessary to distinguish the signal from the black link).

Add or remove "nominal" as needed to make it explicit which one is being used in each case (including in 156A.3).

Change the two references to 400ZR section 13.4.2 and to the signal's -20 dB spectral mask points, to a new reference within this document:

Add a row in Table 156-7, Spectral half-width for OSNR, or some such name, and refer to that (one could put the number in GHz in 159.9.15, 16, 17 but that would make it harder to refer to this material in future). Use a consistent number for all three sections.

Response
Response Status: U

It might be an improvement to make the changes proposed. This is not critical to address at this time, however the commenter is encouraged to resubmit this comment during SA Ballot.

<table>
<thead>
<tr>
<th>CI</th>
<th>SC</th>
<th>P</th>
<th>L</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>156</td>
<td>156.10.1.2.2</td>
<td>94</td>
<td>36</td>
<td>20564</td>
</tr>
</tbody>
</table>

Dawe, Piers Nvidia

Comment Type: TR
Comment Status: R

The reference receiver for optical path OSNR penalty should be qualified as it is understood that the G.698.2 Annex A reference receiver is.

I believe that an EVM calculation for assessing a transmitter does not do chromatic dispersion and differential group delay compensation (because EVM would be measured at TP2), while a measurement at TP3 after the black link needs chromatic dispersion and differential group delay compensation. For consistency, that should be done at both ends of the black link.

Suggested Remedy

Say that the reference receiver is as defined 156.10.1, with additional steps to compensate for chromatic dispersion and differential group delay. Two places in this subclause.

Response
Response Status: U

It might be an improvement to make the changes proposed. This is not critical to address at this time, however the commenter is encouraged to resubmit this comment during SA Ballot.

Comment Type: TR
Comment Status: R

Need a bigger block size for at least one of these, to go with the jitter corner frequency

Suggested Remedy

Response
Response Status: U

The CRG had no consensus to make a change at this, more study on a suitable solution is required.
<table>
<thead>
<tr>
<th>CI</th>
<th>SC</th>
<th>P</th>
<th>L</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>156</td>
<td>156.10.1.2.4</td>
<td>112</td>
<td>21</td>
<td>244</td>
</tr>
</tbody>
</table>

Comment

The measurement already has significant filtering: "The coherent receiver has a bandwidth of at least 30 GHz". Filtering it again without taking this into account would be too much. D2.1 comments 285, optical parameters are inadequately defined.

Suggested Remedy

Say that the signal is further filtered so that the combined effect of the observation filter in 156.10.1.1 Calibrated coherent receiver and this filter is the RRC response.

Response

REJECT. There is an understanding there are 2 stages of filtering. It is not clear if the RRC filter is adjusted based on the electrical bandwidth. There was no consensus to make a change at this time.

<table>
<thead>
<tr>
<th>CI</th>
<th>SC</th>
<th>P</th>
<th>L</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>156</td>
<td>156.10.1.2.7</td>
<td>112</td>
<td>36</td>
<td>28</td>
</tr>
</tbody>
</table>

Comment

This says "The EVM_{max} calculations are defined in OIF-400ZR-02.0, Implementation Agreement 400ZR section 20.4", which says EVM_{MAX}, is defined as a ratio of the root mean square (RMS) value of all the error vectors (averaged over N symbols) to the maximum magnitude of all the reference constellation points" but it doesn't define reference constellation points. D2.1 comments 285, optical parameters are inadequately defined.

Suggested Remedy

Define reference constellation points - or define the magnitude of the reference constellation, which may be simpler because it should contain the same 16 points over and over again, and it may be that all four corners are the same distance from the origin.

Response

REJECT. The proposed change does not contain sufficient detail so that the CRG can understand the specific changes that satisfy the comment.

This is not critical to address at this time, however a similar comment is encouraged to be resubmitted during SA Ballot.