5G SC report
Philosophy

• Include and describe all options
 ▫ That are derivatives of the four requested cases
• Expand cost/benefit for each
 ▫ In a prioritized manner based on contributions
 • starting with option 4, then option 1 (*per 78, 81*)
• SC conclusion recommended
 ▫ Consensus preferred on preference
 • not required
 • Worst case straw poll preference
 ▫ Recommend way forward for preference (s)
What are “costs and benefits”?

• This is a cost-benefit analysis
 ▫ But without monetary cost, only relative costs
 ▫ A quantitative pros vs cons
 ▫ Strengths, Weaknesses, Opportunities and Threats

• Brainstorm all costs and benefits
 ▫ E.g., resource cost, standards development cost, installation cost, operational cost, energy cost, etc.
 ▫ Are the unexpected costs?
 ▫ Are there unanticipated benefits?

• Estimate value relative to a baseline
Proposed Table of Contents

- **Introduction**
 - IEEE 802 5G related projects

- **Options Considered**
 1. **IEEE 5G**
 - Description
 - Benefits
 - Costs
 2. **IMT-2020 – single technology**
 - Description
 - Benefits
 - Costs
 3. **IMT-2020 – set of technologies**
 - Description
 - Benefits
 - Costs
 4. **IMT-2020 – external proposal**
 - Description
 - Benefits
 - Costs

- **Conclusion**

802.1
- P802.1CF – OmniRAN architecture
- P802.1CM – TSN for Fronthaul

802.3

802.11
- P802.11ax – high aggregate throughput. High density of users.
- IEEE Std 802.11ad – high individual throughput, short range.
- P802.11ay – next generation of 802.11ad.
- P802.11ah - <1 GHz for IoT requirements

802.15
- P802.15.3d
- 100Gb/s THz project
- P802.15.7 REVa, Optical Wireless Communications,
 - P802.15.4 family.

802.16
- 802.16.1

802.21
- P802.21.1
What is 5G?
There are two contexts for 5G

- **IEEE 5G**
 - Some sort of description will be required
 - This may include use cases and requirements
- **IMT-2020**
 - Usage scenarios (as defined by ITU-R M.2083)
 - Enhanced Mobile Broadband (eMBB)
 - Ultra-reliable and low latency communications (UrLLC)
 - Massive machine type communications (mMTC)
 - Capabilities (as defined by ITU-R M.2083)
 - Peak Data rate, User experienced data rate, Latency, Mobility, Connection density, Energy efficiency, Spectrum efficiency, Area traffic capacity
IMT-2020 (per ITU-R M.2083 - Figure 2)
IEEE 5G architecture

... simplified
There are also two contexts for 3GPP

- **IEEE 5G**
 - There is no focus on the ITU-R IMT-2020 submission
 - 3GPP defines solely, or jointly with IEEE 802, the requirements and use cases for IEEE 802 technology
 - This could be equivalent to, or a subset of, 3GPP 5G

- **IMT-2020 5G**
 - There is an ITU-R IMT-2020 submission
 - By either 3GPP or IEEE
 - The requirements placed on IEEE 802 are based on the usage scenarios and capabilities defined by ITU-R M.2083)
What are all the derivatives of options?
1. IEEE 5G

- Description
 - Cost/benefit analysis does not include submission to IMT-2020
 - At least simplified architecture, but likely more
 - A combination of multiple IEEE standard technologies, profiled in a single standard

a) IEEE 802 wireless 5G
 i. 802.11 only
 a. P802.11ax – high aggregate throughput. High density of users.
 b. P802.11ay, IEEE Std 802.11ad – high individual throughput, short range.
 c. P802.11ah - <1 GHz for IoT requirements
 d. 802.11p - wireless access in vehicular environments
 ii. 802.15 only
 a. P802.15.3d
 b. 100Gb/s THz project
 c. P802.15.7 REVa, Optical Wireless Communications,
 d. P802.15.4 family.

b) “All IEEE 802” 5G
 i. And submit to ITU-R as non-IMT (i.e., WAS/RLAN) and complimentary to IMT-2020

c) IEEE 802 5G plus others
 i. 3GPP 5G
 ii. IETF

d) “All IEEE” 5G
 i. IEEE 802 and ComSoc projects

e) IEEE 5G plus others
2. IMT-2020 - single technology

- Description
 - Just radio interface of simplified architecture. Single or multiple singles...
 - IMT-2020 proposal by IEEE

a) eMBB (<6GHz)
 i. IEEE 802.11ax
 ii. IEEE 802.11ac
 iii. IEEE 802.11n

b) eMBB (>6GHz)
 i. IEEE 802.11ay
 ii. IEEE 802.11aj
 iii. IEEE 802.11ad

c) UrLLC – IEEE 802.11p

d) mMTC – IEEE 802.11ah

e) eMBB
 a) P802.15.3d
 b) 100Gb/s THz project
 c) P802.15.7 REVa, Optical Wireless Communications,

f) mMTC - P802.15.4 family.
3. IMT-2020 - set of technologies

- Description
 - At least radio interface of simplified architecture, but likely more
 - A combination of multiple IEEE 802 standard technologies, profiled in a single standard
 - IMT-2020 proposal by IEEE

a) IEEE 802.11
 i. eMBB (<6GHz) – IEEE 802.11 ax,ac,n
 ii. eMBB (>6GHz) – IEEE 802.11 ay,aj,ad
 iii. UrLLC – IEEE 802.11p
 iv. mMTC – IEEE 802.11ah

b) IEEE 802.11 with 802.1/3

c) IEEE 802.15
 a) eMBB
 a) P802.15.3d
 b) 100Gb/s THz project
 c) P802.15.7 REVa, Optical Wireless Communications,
 b) mMTC - P802.15.4 family.

d) IEEE 802.11 with 3GPP 5G
 i. LWA
 ii. LWIP
 iii. eLWA
 iv. New?
4. IMT-2020 - external proposal

- Description
 - Part of a complete architecture
 - A combination of IEEE 802 standard technologies with other technologies (e.g., 3GPP)
 - IMT-2020 proposal by external party (e.g., 3GPP)

a) IEEE 802.11 with 3GPP 5G
 - i. LWA
 - ii. LWIP
 - iii. eLWA (Release 14)
 - iv. Release 16?
What are all the initial cost/benefits?
Approach Analysis (4.a)

- **IMT 2020 – external party (i.e., 3GPP)**
 - IEEE802 is as a part of 5G radio and networks of other technologies.
 - Radio interface
 - IEEE802.11 using (e)LWA or LWIP
 - Network management, control, etc.
 - under external party’s submission.
 - Benefits:
 - IEEE802 is a component in ITU-R/3GPPP 5G architecture
 - Align with industry 5G branding momentum
 - Align with the current scope of IEEE802 SDO: PHY and MAC
 - Help ITU-R to study the need of new spectrum for IMT-2020
 - The least effort among four approaches
 - IEEE 802 could just let 3GPP include IEEE 802 technology autonomously
 - Costs:
 - IEEE 802 needs to coordinate with 3GPP for their submission of IMT-2020 proposal in ITU-R.
Approach Analysis (1.b.i)

- **IEEE802 5G as ITU-R non-IMT**
 - Submit 5G proposals to ITU-R WP5A WAS/RLAN as a complementary solution of IMT-2020
 - Possible IEEE802 technology for component of 5G
 - Radio interface
 - IEEE802.11, IEEE802.15, etc
 - Network management and control (TBD)
 - Back haul and front haul
 - IEEE 802.1/3, IEEE 802.11, etc

- **Benefits:**
 - Align ITU-R WP5A scope for non-IMT systems: WAS/RLAN
 - May identify some use cases and requirements for non-IMT 5G services.
 - Support new spectrum sharing mechanism with other technologies
 - Promote IEEE802 in ITU-R 5G branding as non-IMT and complementary to IMT-2020

- **Costs:**
 - Requires more work than the approach 4.
Next Steps
Contributions requested

- **IEEE 5G**
 - Use cases and Requirements
 - Endorse others, subset others, develop new
 - Describe architecture and/or technology

- **Derivative options**
 - Expand list
 - Prioritize list

- **Report content**
 - Indicate which option
 - Expand costs and benefits