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Graphene
a Two-Dimensional Atomic Thin Film

Two dimensional thin film structure may allow for scalable fabrication
of electronic circuits.
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Large Area Graphene

r

With just a few years of development, we have seen tremendous development
with >30” single layer graphene now possible using CVD.
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Graphene for High Speed Electronics

» Single atomic thickness
» Highest carrier mobility up to 200,000 -1,000,000 cm? V-1s1
» Highest saturation velocity (~5.5X 107 cm/s)

» High thermal conductivity (~5,000 Wm~1K™1)

» Exceptional mechanical strength and flexibility

» Optically transparency

» Chemically inertness
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Challenges to High performance Graphene Transistors

Dielectric integration: PNAS, 107, 6711: Adv. Device fabrication: Nature, 467, 305:
Mater. 22, 2941: Nano Lett. 10, 1917; 11 , 2555. Nano Lett. 10, 3952 , NanolLett. 10.1021/nl201922c

2. Induce a band-gap: graphene nanostructures

Nanoribbon: Nano Lett., 9, 2083 (2009); 10, Nanomesh: Nature Nano 5, 190, (2010); Chem Phys.
4590; 11, 1082 (2011) Nature Nano 5, 655, (2010). [ett. 498,334 (2010).
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Challenges to High performance

Graphene Transistors
Gate dielectrics
(oxidation, deposition) Semiconductor channel

(high temperature growth)

/'ﬁ(w,’I " Drain .'}'.'".1

I" "I'.‘ .‘i_:_*- -
Source, drain contact -
(Implantation, anneal) SEiacn SUEEDa /

% To form a transistor requires effective integration with other material components
including gate dielectrics and source drain contacts.

% Conventional electronic fabrication processes cannot be readily applied to
graphene as many of these processes steps could create substantial damage to
single atomic layer gaphene.

+» Alterative material integration or device fabrication strategies are needed to retain
the high electronic performance and truly capitalize the intrinsic merit of graphene.
<Xiangfeng Duan>, <UCLA>
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Graphene-Dielectric Integration
ALD Dielectric Oxide Film on Graphene

1) Precursor pulse 2) Purge
3) Oxidant pulse 4) Purge
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% Atomic-layer deposition (ALD) requires functionalization of graphene surface to
render surface reactive groups for the deposition of high-k dielectrics.

¢ This process either introduces undesired impurities or breaks the chemical bond in
pristine graphene lattice, inevitably leading to a significant degradation in carrier
mobilities. JACS 130, 8152 (2008).
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Graphene-Dielectric Integration
PVD Dielectric Oxide Film on Graphene
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¢ Physical vapor deposition (PVD) such as electron-beam evaporation or
sputtering process often results in lower quality dielectrics and also significant

damages to graphene layer.

ACS Nano, 2, 1033 (2008).
<Xiangfeng Duan>, <UCLA>
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Substantial Mobility Degradation in Top-
Gated Devices

Top Gate Dielectrics Mobility before Mobility after
Deposition Deposition
Al,O; by ALD 1200 cm?/V's 400 cm?/V-s
SiO, by evaporation 4790 cm?/V-s 790 cm?/V-s
SiO,, by evaporation 1700 cm2/V-s 500 cm?/V-s
HfO, by ALD 2400 cm?/V-s 1200 cm?/V's

HfO, by ALD with polymer buffer layer: ~ 7600 cm?/V-s
The mobility values observed in the top-gated devices to date are often
nearly one order of magnitude smaller than what can be achieved in the
back-gated devices

Nano Lett. 9, 422 (2009); Nano Lett. 9, 4474 (2009); Appl. Phys. Lett. 95, 033103 (2009); IEEE Electron Dev. Lett.
28, 282 (2007); Nat. Nanotech. 3, 654 (2008); Appl. Phys. Lett. 94, 062107 (2009).
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Post-growth Integration of Dielectric Thin

film as Top gate Dielectrics
Physical Integration (e.g. Lamination)
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** The post-growth can allow integration of distinct materials or processes
that are normally either chemically or structurally incompatible.
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Post-growth Integration of Dielectric
Thin film as Top gate Dielectrics

Physical Integration (e.g. Lamination)

Aligning on graphene Oxygen etching Metallization

The physical assembly approach can effectively integrate dielectric
nanostructures with graphene without introducing any appreciable
defects into the graphene lattice, and thus can effectively preserve the

high carrier mobility in the resulting devices.
PNAS 107, 6711-6715 (2010).
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Al,O; Nanoribbon

5m$m

Single crystalline, Smooth surface, High dielectric constant
PNAS 107, 6711-6715 (2010).
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Dielectric Properties of Al,O; Nanoribbon
J = AE, exp(-B/E,,)
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The current-voltage (I-V) measurements show typical Fowler—Nordheim (F-N)
tunnelling behaviour with a breakdown field of 8.5 MV/cm, comparable to/better
than best reported ALD ALO; film.
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Integration of Graphene and Nanoribbon
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Raman studies clearly demonstrate that the room-temperature physical
assembly approach to integrate oxide nanostructures with graphene does not
introduce any appreciable defects into the graphene lattice.
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Seamless Integration between
Graphene and Nanoribbon

_______
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Cross-sectional TEM studies show that there are no gaps or
other impurities at the graphene/dielectric interface.

PNAS 107, 6711-6715 (2010).
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Top-gated Graphene Transistor
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% Top-gated device exhibits typical transistor characteristics with a max g,,, of
about 290 mS, which is more than 15 times larger than that of the back-gated

device (g,, ~19.5 mS).
% The derived mobility value reaches 22,400 cm?/V-s using the constant

mobility model:
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PNAS 107, 6711-6715 (2010).
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Mobilities in Al,O; Nano-ribbon
Top-gated Graphene Transistors

Device No. 1 2 3 4 5 6 7 8 9
Thickness 38 45 48 50 60 65 75 82 150
(nm)
Mobility | 23600 | 22400 | 18200 | 22600 | 11200 | 15300 | 21100 | 11800 | 13300
(cm2/V-s)

** The mobilities achieved in our device represent the highest mobility

achieved to date in top-gated graphene devices.
“* The presence of Al,O, nanoribbon on top of graphene does not lead

to any mobility degradation.

PNAS 107, 6711-6715 (2010).
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Towards a High Speed Transistor
Access Resistance
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¢ Substantial access resistance due to the significant gaps between the source-
gate and gate-drain electrodes, where a large portion of the graphene channel in
the gap area is not gated.

* With the size of the device shrinking into the deep nanometer regime, there is
an increasing need for a more precise and reliable device fabrication process.
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Self-Aligned Graphene Transistors with a Nanowire Gate

Sio2graphene

Si

% The physical assembly of nanowire gate preserves the high carrier
mobility in graphene and the self-aligned source-drain electrodes minimize
the access resistance and therefore can enable transistor performance not

previously achievable. Nature 467, 305 (2010).
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Co,Si-Al,O, Core-shell Nanowires
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% The Co,Si/Al,O; core/shell nanowires can be synthesized through CVD
growth of Co,Si nanowires followed by ALD deposition of Al,O, shell.

s The Co02Si/AI203 core/shell nanowires show a low resistivity, which is
particularly important for them to function as effective gate electrodes for RF
graphene transistors (to reduce gate RC delay).

Nature 467, 305 (2010).
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High Performance Short Channel Graphene Transistors
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s The self-alignment allow a more 60 times improvement in trans-conductance to
reach 1.27 ms/um, promising ultrahigh speed transistors: f; = gm/(Zan) ~323 GHz.
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Graphene Transistor with f; up to 300 GHz

10°
L=210 nm
f =125 GHz
101 B l
10

|_\
Q

n

[EN
(=N

Ih21| Gai

L=180 nm
f;=168 GHz

l

10 10 10
Frequency (GHz)

%

Frequency (GHz)

qj‘

ain
|_\

Ih21| G

[N
Q.

L=140 nm
f,.=300 GHz

d 10

Frequency (GHz)

% On-chip microwave measurements demonstrate record high intrinsic cutoff
frequency (f;) in the range of 100-300 GHz,.

* The cutoff frequency of the graphene transistors is comparable to that of the
very best high electron mobility transistors with similar gate lengths: marking an
important milestone in graphene RF devices and can enable exciting opportunities

in high-speed electronics.

Nature 467, 305 (2010).

Submission

<Xiangfeng Duan>, <UCLA>




July 2011 doc.: IEEE 802.15/0463

Approaching Terahertz Transistors
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+ Nanowire gate with a flat side surface allows seamless integration between the nanowire

gate and graphene to ensure excellent gate coupling to further improve the device
performance.

+ Channel length dependent studies predicts terahertz graphene transistors is achievable in
sub-70 nm graphene transistors: f; = 70 GHz/Lgate(in um), matching well with parallel
theory work using self-consistent qguantum simulations (by Jing Guo, Nano Research, 2011, DOI:

10.1007/s12274-011-0113-1).
° ) Nano Lett. 10, 3952-3956 (2010)
<Xiangfeng Duan>, <UCLA>
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Towards Scalable Graphene Transistors

Large Area Graphene Nanowire Gate Array

Chemical vapor deposition and High-yield self-limiting
transfer of large area graphene dielectrophoresis assembly of
on variable substrate single nanowires

Nature Nanotechnol. 5, 525 (2010)
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Towards Scalable Graphene Transistors
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Nano Letters, 2011
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Towards Scalable Graphene Transistors
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Nano Letters, 2011
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Gigahertz Graphene Functional Circuits
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Nano Letters, 2011
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Summary

* Graphene is emerging as an interesting material system for high
speed electronics, but often require unconventional processes.

*» The physical assembly approach allows seamless integration of
graphene with top-gate dielectrics without introducing any
appreciable defects to preserve the high carrier mobility.

*» The self-aligned approach allows automatic and nearly perfect
alignment of gate, source and drain electrodes, to enable short-
channel graphene transistors with unprecedented speed.

*» The combination of CVD graphene and dielectrophoretic
assembly allows scalable fabrication high speed graphene
transistors and circuits.
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