Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: Current Status of Semiconductor Technologies and Circuits for THz applications

Date Submitted: July 2008
Source: Jae-Sung Rieh, Korea University
Address
Voice: FAX: E-Mail: jsrieh@korea.ac.kr

Re:

Abstract: Current Status of Semiconductor Technologies and Circuits for THz applications

Purpose:

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.
Current Status of Semiconductor Technologies and Circuits for THz applications

2008. 7.16

Jae-Sung Rieh
School of Electrical Engineering
Korea University
Outline

- Introduction
- Components for THz Communication Systems
- Semiconductor Technologies for THz
- Circuit Examples for THz
- Summary
Introduction

- Two main approaches for THz system implementation
 - Optical approach
 - Challenge: lowering the operation frequency
 - Electrical approach
 - Challenge: raising the operation frequency

- Electrical approaches
 - Diode approach
 → Passive and no gain provided
 - Transistor approach
 → Operation frequency still not sufficient but growing
Traditional Diode-Based THz Receiver

- **Issues**
 - Absence of LNA
 - Noise from mixer and IF amp not suppressed
 - Passive nature of mixer
 - No gain provided. Noise from IF amp not suppressed
 - LO source
 - Typically not integration-ready

\[F = F_{m \text{ixer}} + L_{M \text{ixer}} \left(F_{I \text{Famp}} - 1 \right) + \ldots \]
Transistor-Based THz Receiver

- Widely accepted architecture for low frequency receivers
 - Addition of LNA
 - Active mixer with gain or reduced loss
 - Integration-friendly LO

→ Enabled by transistor-based semiconductor technologies
→ Can this architecture be applied to THz receivers, too?

\[F = F_{LNA} + \frac{(F_{Mixer} - 1)}{G_{LNA}} + \frac{(F_{IFamp} - 1)}{G_{LNA} G_{Mixer}} + \ldots \]
Semiconductor Technologies for THz

• III-V technologies
 – HBT (heterojunction bipolar transistor) technologies
 – HEMT (high electron mobility transistor) technologies

• Si-based technologies
 – SiGe HBT technologies
 – RFCMOS technologies
Technology Comparison

GaAs/InP HBT or HEMT
- Very high operation speed
- High cost
- Reliability issues

SiGe BiCMOS
- High operation speed
- CMOS-technology compatible
- High reliability
- Extra mask steps on base CMOS technology

CMOS
- Acceptable operation speed
- Low cost and high reliability
- Relatively low g_m
- Poor device matching
Operation Speed Trend of Technologies
III-V HBT Record Performance

- UIUC
- Peak $f_T = 765$ GHz at 25C
- Peak $f_T = 845$ GHz at -55C

Snodgrass et al IEDM 2006
III-V HBT Performance Issues

- Issues with increasing operation frequency
 - Reduction in breakdown voltage \Rightarrow Limits safe operation region
 - Increase in collector current density \Rightarrow Influences reliability

Snodgrass et al IEDM 2006
HEMT Record Performance

- Seoul National Univ.
- 15 nm gate length InP HEMT
- Peak $f_T / f_{max} = 610/305$ GHz

Yeon et al IEDM 2007
SiGe HBT Record Performance

- IBM
- 0.12 um SiGe HBT
- Peak $f_T / f_{max} = 375/210$ GHz

Rieh et al IPRM 2003
SiGe HBT Performance Trend

- Trend of IBM SiGe HBTs

<table>
<thead>
<tr>
<th></th>
<th>5HP</th>
<th>6HP</th>
<th>7HP</th>
<th>8HP</th>
<th>9HP</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_T [GHz]</td>
<td>47</td>
<td>120</td>
<td>210</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td>f_{max} [GHz]</td>
<td>85</td>
<td>150</td>
<td>285</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>$J_{C,P}$ [mA/µm²]</td>
<td>~1.5</td>
<td>~8</td>
<td>~12</td>
<td>~19</td>
<td></td>
</tr>
<tr>
<td>BV_{CEO} [V]</td>
<td>3.4</td>
<td>1.8</td>
<td>1.7</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>BV_{CBO} [V]</td>
<td>10.5</td>
<td>6.5</td>
<td>5.5</td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td>Beta</td>
<td>100</td>
<td>300</td>
<td>300</td>
<td>650</td>
<td></td>
</tr>
</tbody>
</table>
SiGe HBT f_T and f_{max}
RFCMOS Record Performance (I)

- 65 nm SOI NFET ($L_{\text{poly}}=29$ nm)
- Peak $f_T / f_{\text{max}} = 360/420$ GHz

- 65 nm SOI PFET
- Peak $f_T / f_{\text{max}} = 238/295$ GHz

Post et al IEDM 2006
RFCMOS Record Performance (II)

- **NFET:** 45 nm SOI ($L_{\text{poly}}=29$ nm)
 - Peak $f_T = 485$ GHz

- **PFET:** 45 nm SOI ($L_{\text{poly}}=31$ nm)
 - Peak $f_T = 345$ GHz

A: Relaxed poly pitch, B: Minimum poly pitch
ITRS Roadmap 2007 for RFCMOS

Near-term

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAM ½ Pitch (nm) (contacted)</td>
<td>65</td>
<td>57</td>
<td>50</td>
<td>45</td>
<td>40</td>
<td>35</td>
<td>32</td>
<td>28</td>
<td>25</td>
</tr>
</tbody>
</table>

Performance RF/Analog [1]

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage (V) [2]</td>
<td>1.2</td>
<td>1.1</td>
<td>1.1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.95</td>
<td>0.85</td>
</tr>
<tr>
<td>T_{ox} (nm) [2]</td>
<td>2</td>
<td>1.9</td>
<td>1.6</td>
<td>1.5</td>
<td>1.4</td>
<td>1.3</td>
<td>1.2</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>Gate Length (nm) [2]</td>
<td>53</td>
<td>45</td>
<td>37</td>
<td>32</td>
<td>28</td>
<td>25</td>
<td>22</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>g_m/g_d at 5 L_{min}-digital [3]</td>
<td>32</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>$1/f$-noise ($\mu V^2 \cdot \mu m^2$/Hz) [4]</td>
<td>160</td>
<td>140</td>
<td>100</td>
<td>90</td>
<td>80</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>σV_{th} matching (mV $\cdot \mu m$) [5]</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>I_{ds} ($\mu A/\mu m$) [6]</td>
<td>13</td>
<td>11</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Peak F_1 (GHz) [7]</td>
<td>170</td>
<td>200</td>
<td>240</td>
<td>280</td>
<td>320</td>
<td>360</td>
<td>400</td>
<td>440</td>
<td>490</td>
</tr>
<tr>
<td>Peak F_{max} (GHz) [8]</td>
<td>200</td>
<td>240</td>
<td>290</td>
<td>340</td>
<td>390</td>
<td>440</td>
<td>510</td>
<td>560</td>
<td>630</td>
</tr>
<tr>
<td>$N_{F_{min}}$ (dB) [9]</td>
<td>0.25</td>
<td>0.22</td>
<td>0.2</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
</tr>
</tbody>
</table>

Long-term

<table>
<thead>
<tr>
<th>Year of Production</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAM ½ Pitch (nm) (contacted)</td>
<td>22</td>
<td>20</td>
<td>18</td>
<td>16</td>
<td>14</td>
<td>13</td>
<td>11</td>
</tr>
</tbody>
</table>

Performance RF/Analog [1]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage (V) [2]</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.75</td>
<td>0.75</td>
<td>0.7</td>
</tr>
<tr>
<td>T_{ox} (nm) [2]</td>
<td>1.1</td>
<td>1.1</td>
<td>1</td>
<td>1</td>
<td>0.9</td>
<td>0.9</td>
<td>0.8</td>
</tr>
<tr>
<td>Gate Length (nm) [2]</td>
<td>16</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>g_m/g_d at 5 L_{min}-digital [3]</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>$1/f$-noise ($\mu V^2 \cdot \mu m^2$/Hz) [4]</td>
<td>50</td>
<td>50</td>
<td>40</td>
<td>40</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>σV_{th} matching (mV $\cdot \mu m$) [5]</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>I_{ds} ($\mu A/\mu m$) [6]</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Peak F_1 (GHz) [7]</td>
<td>550</td>
<td>630</td>
<td>670</td>
<td>730</td>
<td>790</td>
<td>870</td>
<td>870</td>
</tr>
<tr>
<td>Peak F_{max} (GHz) [8]</td>
<td>710</td>
<td>820</td>
<td>880</td>
<td>960</td>
<td>1050</td>
<td>1160</td>
<td>1160</td>
</tr>
<tr>
<td>$N_{F_{min}}$ (dB) [9]</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
</tr>
</tbody>
</table>
320 GHz InP HEMT Amplifier

- NGC
- 35 nm NGC InP HEMT
- 3 stage
- $P_{\text{Diss}} = 43 \text{ mW}$
- Gain = 13-15 dB for 295-340 GHz
324 GHz InP HBT Amplifier

- Teledyne
- 250 nm Teledyne InP HBT
- Single stage common base
- Gain = 4.8 dB at 324 GHz
- Saturated $P_{\text{out}} = 1.13$ dBm
220 GHz GaAs MHEMT LNA

- Franhofer
- 0.1 um Franhofer GaAs mHEMT
- 4 stage cascode
- Peak gain = ~20 dB
- NF = 9.4 dB up to 213 GHz

Pukala et al MWCL 2008
140 GHz SiGe HBT Amplifier

- Univ. of Toronto
- STM SiGe BiCMOS
- 5 stage cascode
- $P_{\text{Diss}} = 112$ mW
- Gain = 17 dB at 140 GHz

Laskin et al IMS 2007
Accumulated Performance: Amplifiers
346 GHz InP HEMT Fundamental Oscillator

- NGC
- 35 nm NGC InP HEMT
- DC power = 11.7 mW
- Output power = -16 dBm at 346 GHz

<table>
<thead>
<tr>
<th>Frequency of Oscillation (GHz)</th>
<th>Vds (V)</th>
<th>Ids (mA)</th>
<th>Measured Output Power (μW)</th>
<th>DC to RF Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>254</td>
<td>1.3</td>
<td>9</td>
<td>158</td>
<td>1.35</td>
</tr>
<tr>
<td>314</td>
<td>1.2</td>
<td>6</td>
<td>46</td>
<td>0.64</td>
</tr>
<tr>
<td>346</td>
<td>1.3</td>
<td>9</td>
<td>25</td>
<td>0.21</td>
</tr>
</tbody>
</table>

Radisic et al MWCL 2007
278 GHz SiGe HBT Push-Push VCO

- Technische Univ. Munchen
- Infineon 200 GHz SiGe HBT Technology
- Tuning range: 275.5 - 279.6 GHz
- Output power = -30 dBm at 277 GHz
- DC power = 132 mW
410 GHz RFCMOS Push-Push VCO

- Univ. of Florida
- 45 nm RFCMOS
- Output power = -47 dBm at 410 GHz
- DC power = 16.5 mW

Seok et al ISSCC 2008
Accumulated Performance: Oscillators (I)

Partially adopted from Wanner et al IMS 2007
Accumulated Performance: Oscillators (II)

Partially adopted from Wanner et al IMS 2007
220 GHz MHEMT Active Mixer

- Chalmers University
- 0.1 um GaAs MHEMT
- Conversion loss = ~12 dB for resistive mixer mode
- Conversion loss = ~8 dB for drain mixer mode

Gunnarsson et al MWCL 2008
Accumulated Performance: Active Mixers

![Graph showing conversion loss vs. RF frequency]
Summary

• Current status of semiconductor technologies
 – III-V HBT: $f_T \sim 785$ GHz
 – III-V HEMT: $f_T \sim 610$ GHz
 – SiGe HBT: $f_T \sim 375$ GHz
 – RFCMOS: $f_T \sim 485$ GHz

• Current status of circuits
 – Amplifiers: up to 345 GHz (15 dB gain)
 – Oscillators: up to 410 GHz for push-push, 346 GHz for fundamental
 – Active mixers: up to ~ 220 GHz with conversion loss ~ 8 dB

→ Transistor-based THz front-end highly promising