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1. Introduction

Multiple antenna technologies are being considered as a viable solution for the next generation of mobile and wireless local area networks (WLAN). The use of multiple antennas offers extended range, improved reliability and higher throughputs than conventional single antenna communication systems. Multiple antenna systems can be generally separated into two main groups: smart antennas-based systems and spatial multiplexing-based multiple-input multiple-output (MIMO) systems.

Smart antennas-based systems exploit multiple transmit and/or receive antennas to provide diversity gain in a fading environment, antenna gain and interference suppression. These gains translate into improvement of the spectrum efficiency, range and reliability of wireless networks. These systems may have an array of multiple antennas only at one end of the communication link (e.g., at the transmit side, such as multiple-input single-output (MISO) systems; or at the receive side, such as single-input multiple-output (SIMO) systems) or at both ends (MIMO systems). When multiple antennas are used at the transmitter, each can broadcast at the same time and in the same bandwidth an independent signal substream. This corresponds to the second category of multi-antennas systems, referred to as spatial multiplexing-based multiple-input multiple-output (MIMO) systems. Using this technology with n transmit and n receive antennas, for example, n-fold increase in data rate can be achieved over a single antenna system [1]. This breakthrough technology appears promising in fulfilling the growing demand for future high data rate PAN, WLAN, WAN, and 4G systems.

In this document we propose a set of channel models applicable to indoor MIMO WLAN systems. The channel models are an extension of the single-input single-output (SISO) WLAN channel models proposed by Medbo et. al. [2,3]. The newly developed multiple antenna models are based on the cluster model developed by Saleh and Valenzuela [4], and further elaborated upon by Spencer et al. [5], Cramer et al. [6], and Poon and Ho [7]. Indoor SISO and MIMO indoor wireless channels were further analyzed in [8- 18].

A step-wise development of the new models follows: In each of the five models (A-E) in [2], distinct clusters were identified first. The number of clusters found was from 3 to 6, depending on the model. This finding is consistent with numerous experimentally determined results reported in the literature [4-7,9,10] and also using ray-tracing methods [8]. Next, the power of each tap in a particular cluster was determined so that the sum of the powers of overlapping taps corresponding to different clusters corresponds to the powers of the original A-E power delay profiles. Next, azimuth spread (AS), angle-of-arrival (AoA), and angle of departure (AoD) were assigned to each tap using statistical methods so that the resulting cluster AS and mean AoA (AoD) agree with experimentally determined AS and mean AoA (AoD) results reported in the literature. Cluster AS was experimentally found to be in the 20o to 40o range [5-10], and the mean AoA was found to be random with a uniform distribution. With knowledge of each tap power, AS, and AoA, for a given antenna configuration, the channel matrix H can be determined. The channel matrix H fully describes the propagation channel between all transmit and receive antennas. If the number of receive antennas is n and transmit antennas is m, the channel matrix H has a dimension of n x m. To arrive at channel matrix H, we use a method that employs correlation matrix and i.i.d. matrix (zero-mean unit variance independent complex Gaussian random variables). The correlation matrix for each tap is based on the power azimuth spectrum (PAS) with AS being the second moment of PAS [19,20]. To verify the newly developed model, we have calculated the antenna correlation coefficients and channel capacity assuming the narrowband case. The correlation coefficients agree with those reported in the literature for similar environments. 

The paper is organized as follows. In Sec. 2 we describe existing SISO WLAN models. Section 3 formulates the MIMO channel matrix. Section 4 describes the clustering approach and the method for model parameters calculation. In Sec. 5 we summarize the model parameters. In Sec. 6 we briefly describe the Matlab program. Section 7 presents the antenna correlation and channel capacity results using the models, and with Sec. 8 we conclude.
2. Existing SISO WLAN Models

A set of WLAN channel models was developed by Medbo et. al. [2,3]. We use the multipath delay profiles specified in these models as a basis of our MIMO WLAN models.

In [2], five delay profile models were proposed for different environments (Models A-E): 

· Model A for a typical office environment, non-line-of-sight (NLOS) conditions, and 50 ns rms delay spread.

· Model B for a typical large open space and office environments, NLOS conditions, and 100 ns rms delay spread.

· Model C for a large open space (indoor and outdoor), NLOS conditions, and 150 ns rms delay spread.

· Model D, same as model C, line-of-sight (LOS) conditions, and 140 ns rms delay spread (10 dB Ricean K-factor at the first delay).

· Model E for a typical large open space (indoor and outdoor), NLOS conditions, and 250 ns rms delay spread.

The tables with channel coefficients (tap delays and corresponding powers) can be found in [2]. The path loss model was presented in [3]. The model consists of the free space loss LFS and a linear loss per meter 

                                                          L(d) = LFS(d) + 0.5 d                                                     (1)
An alternative path loss model can be found in [21] 

                                                          L(d) = LFS(d)                             d <= 8 m               
                                                                                                                                                 (2)

                                                L(d) = LFS(d)  + 33 log10(d/8)             d > 8 m              
where d is the transmit-receive separation distance.

3. MIMO Matrix Formulation

We follow the MIMO modeling approach presented in [11,20] that utilizes receive and transmit correlation matrices. The MIMO channel matrix H for each tap, at one instance of time, in the A-E delay profile models can be separated into a fixed (constant, LOS) matrix and a Rayleigh matrix [22] (4 transmit and 4 receive antennas example) 

         
[image: image86.bmp]             (3)

where Xij (i-th receiving and j-th transmitting antenna) are correlated zero-mean, unit variance, complex Gaussian random variables as coefficients of the Rayleigh matrix HV, exp(jij) are the elements of the fixed matrix HF, K is the Ricean K-factor, and P is the power of each tap. Note that only model D has a non-zero K-factor on the first tap. We assume that each tap consists of a number of individual rays so that the complex Gaussian assumption is valid.

To correlate the Xij elements of the matrix X, the following method can be used 
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where Rtx and Rrx are the receive and transmit correlation matrices, respectively, and Hiid is a matrix of independent zero mean, unit variance, complex Gaussian random variables, and 
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where txij are the complex correlation coefficients between i-th and j-th transmitting antennas, and rxij are the complex correlation coefficients between i-th and j-th receiving antennas. An alternative approach uses the Kronecker product of the receive and transmit correlation matrices (Hiid is an array in this case instead of matrix) 
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Following is an example of 4x4 MIMO channel transmit and receive correlation matrices 
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The complex correlation coefficient values calculation for each tap is based on the power azimuth spectrum (PAS) with azimuth spread (AS) being the second moment of PAS [19,20]. Using the PAS shape, AS, mean angle-of-arrival (AoA), and individual tap powers, correlation matrices of each tap can be determined as described in [20]. For the uniform linear array (ULA) the complex correlation coefficient at the antenna array is expressed as
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where 
[image: image8.wmf]l

p

/

2

d

D

=

, and RXX and RXY are the cross-correlation functions between the real parts (equal to the cross-correlation function between the imaginary parts) and between the real part and imaginary part, respectively, with  

                                                
[image: image9.wmf]ò

-

=

p

p

f

f

f

d

PAS

D

D

XX

R

)

(

)

sin

cos(

)

(

                                      (9)

and 
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Expressions for correlation coefficients assuming uniform, truncated Gaussian and truncated Laplacian PAS shapes can be found in [20]. To calculate the numerical values of correlation matrices we use a Matlab program developed and distributed by Schumacher [23] (see Sec. 6).

Next we briefly describe the various steps in our cluster modeling approach. We

· Start with five delay profiles A-E defined in [2]. 

· Manually identify clusters in each of the five models.

· Extend clusters so that they overlap, determine tap powers.

· Assume PAS shape of each cluster (Laplacian).

· Assign AS to each cluster.

· Assign mean AoA (AoD) to each cluster.

· Assume AS of each tap within each cluster (5o for all).

· Determine AoA (AoD) of each tap so that the cluster AS and cluster mean AoA (AoD) requirements are met. 

· Assume antenna configuration.

· Calculate correlation matrices for each tap.

In the next section we elaborate on the above steps.

4. Cluster Modeling Approach 
The cluster model was introduced first by Saleh and Valenzuela [4] and later verified, extended, and elaborated upon by other researchers in [5-10]. The received signal amplitude kl is a Rayleigh-distributed random variable with a mean-square value that obeys a double exponential decay law 
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where 
[image: image12.wmf])
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 represents the average power of the first arrival of the first cluster, Tl represents the arrival time of the lth cluster, and kl is the arrival time of the kth arrival within the lth cluster, relative to Tl. The parameters  and  determine the inter-cluster signal level rate of decay and the intra-cluster rate of decay, respectively. The rates of the cluster and ray arrivals can be determined using exponential rate laws
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where  is the cluster arrival rate and  is the ray arrival rate. 

4.1 Number of clusters

The number of clusters found in different indoor environments varies between 2 and 7. In [5], the average number of clusters was found to be 3 for one building, and 7 for another building. In [7] the number of clusters reported was found to be 2 for line-of-sight (LOS) and 5 for non-LOS (NLOS) conditions. We find these reported values consistent, since they depend on the type of indoor environment. 

By carefully analyzing A-E delay profiles, we manually identified 3-6 clusters in each one. Figure 1 shows Model A delay profile with clusters outlined by exponential decay (straight line on a log-scale). 
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Figure 1. Model A delay profile with cluster extension (overlapping clusters).

Clearly, three clusters can be easily identified. The number of clusters found agrees well with the results reported in the literature. For Models A, B, C, D, and E we identified 3, 4, 6, 6 (plus spike), and 5 clusters, respectively.

We extended each cluster in A-E models so that they overlap (see Fig.1). We use a straight line extrapolation function (in dB) on the first few visible taps of each cluster. The powers of overlapping taps were calculated so that the total sum of the powers of overlapping taps corresponding to different clusters equals to the powers of the original A-E power delay profiles. The procedure is described in detail in Appendix A. 

4.2 PAS Shape

The angle of arrival statistics within a cluster were found to closely match the Laplacian distribution [5,6,10]
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where   is the standard deviation of the PAS (which corresponds to the numerical value of AS). The Laplacian distribution is shown in Fig. 2 (a typical simulated AoA (AoD) distribution within a cluster, with AS = 30o).
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Figure 2. Example of Laplacian AoA (AoD) distribution, AS = 30o.

4.3 Mean AoA (AoD) of Each Cluster 

It was found in [5,6] that the relative cluster mean AoAs have a random uniform distribution over all angles. We use the symbol 
[image: image18.wmf]0

J

 for the mean AoA in later sections.

4.4 Tap Time and Angle Dependence

We assume that the channel impulse response as a function of time and azimuth is a separable function, h, [5,6]
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where t is time and  is an azimuth angle.

4.5 AS of Each Cluster

In [5] the mean cluster AS values were found to be 21o and 25o for two buildings measured. In [6] the mean AS value was found to be 37o. To be consistent with these findings, we select the mean cluster AS values for models A-E in the 20o to 40o range. To assign an AS value to each cluster within a particular model, we use observations from outdoor channels. For outdoor environments, it was found that the cluster rms delay spread (DS) is highly correlated (0.7 correlation coefficient) with the AS [24]. It was also found that the cluster rms delay spread and AS can be modeled as correlated log-normal random variables. We apply this intuitive finding to our model using the following procedure (we note that the DS are calculated from the experimental data and AS values are determined following the procedure described below)

· Calculate rms DS of each cluster, convert to dB values.

· For each model, calculate the mean rms DS and its corresponding standard deviation, d (dB).

· Determine the mean AS proportionally (linear dependence) to the mean rms DS values using the following formula (the resulting mean AS is in the 20o to 40o range)
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The model-dependent cluster DS and AS can be represented as log-normal random variables in the following form
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where x and y are zero-mean, unit-variance Gaussian random variables and d and a are standard deviations, respectively.

· Assume that AS standard deviation is the same as the rms DS standard deviation (a = d ), and that the correlation coefficient between the Gaussian random variables x and y is 0.7.

· Using the following formula we can determine y, with x known 
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where  is the correlation coefficient and z is an independent zero-mean unit-variance Gaussian random variable.

The above procedure results in a lower AS for models with lower rms delay spread and larger AS for models with larger rms delay spread. The resulting AS and DS at the receive side are shown in Fig. 3 for all models and clusters. For the transmit side, an independent set of AS was generated and it looks similar to the results in Fig. 3 (cluster AS at receiver does not have to necessarily match the cluster AS at the transmitter).
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Figure 3. Cluster AS (at the receiver) and DS for all five models (A-E).

4.6 AS and AoA of Each Tap Within Each Cluster

The question that is addressed here is how to set the tap angular properties (Angle of Arrival – AoA - 
[image: image25.wmf]i

,

0

J

and Azimuth Spread - AS - 
[image: image26.wmf]2

i

,

q

s

) so that the cumulative effect of all the taps in a given cluster satisfies the cluster angular properties (mean AoA 
[image: image27.wmf]0

J

 and composite AS 
[image: image28.wmf]2

tot

s

 (modeled in equation (18)).

Let the angular distribution of tap i be
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where f is a probability density function in the azimuth domain, i.e. it is non negative and integrates to 1 over [0, 2(], and its mean and variance are respectively
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In setting the angular properties, the following constraints should be satisfied

· Each tap should exhibit a Laplacian PAS, and the cluster it is part of, through the summation of its contributing taps, should also exhibit a Laplacian PAS.

· The AS of the clusters determined in Sec. 4.5 should be used. 

· All the taps of a given cluster should have the same AS 
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· The AoAs of spatially adjacent taps should be smaller than the tap AS 
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 so as to prevent their resolution in the azimuth domain.

Graphically, these constraints can be represented by Fig. 4.
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Figure 4. Distribution of taps within a cluster.

Based on these constraints, it is shown in Appendix B that the conditions to fulfill are
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where 
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 is a scaling parameter related to the power roll-off coefficient of the cluster (see appendix B) and N is the number of taps of the cluster.

Without loss of generality, (21) and (22) can be rewritten as
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and
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where li is a zero-mean, unit-variance Laplacian random variable (introduced to satisfy the first angular constraint presented in the beginning of this section, i.e. each cluster should have a Laplacian PAS) and  is a parameter that we determine using numerical global search to satisfy the required AS and mean AoA of each cluster.

5. Tables of Model Parameters

Tables for Model E have to be updated
In Appendix C, tables show a summary of all model parameters required for the complete channel characterization, determined using methods described in Sec. 4. Each of the five tables representing each of the models A-E is clearly separated into distinct clusters. For each tap within a given cluster, the following parameters are listed

· Power

· AoA

· AS (of arrival, i.e. at the receiver)

· AoD

· AS (of departure, i.e. at the transmitter)

The cluster-related information is also included (although it is not required as an input parameter to the Matlab program that generates the channel matrix): mean AoA and corresponding AS (as seen from the receive side), mean AoD and corresponding AS (as seen from the transmit side). 

In model D, the first tap contains also a fixed signal component, with the Ricean K-factor equal to 10 dB (see (3)). We assume that the fixed signal component impinges the antenna array at the angle of 45o.

6. Matlab Program

The Matlab program that generates multiple snapshots (in time) of the channel matrix H was written by Schumacher [23] where the program description and downloading information can be found.  

7. Simulated MIMO Channel Properties Using Matlab Program

In this section we determine some of the important properties of the simulated channel matrices H, specifically antenna correlation and channel capacity. To arrive at the results, we use the narrowband assumption which implies that the signal seen at the receiver is a summation of all taps. This assumption is valid, for example, for systems based on the orthogonal frequency division multiplexing (OFDM) modulation. For the simulation, we use the following antenna configuration system 

· 4 transmit and 4 receive antennas (4 x 4 MIMO system)

· Uniform linear array (ULA) 

· /2 adjacent antenna spacing

· Isotropic antennas

· No antenna coupling effect

· All antennas with same polarization (vertical) 

7.1 Antenna Correlation Results

Results missing (to be included)
The correlation coefficient between any two variables, y1 and y2, with zero mean and standard deviations of (y1 and (y2, respectively, is given by 


[image: image40.wmf]2

1

2

1

2

1

y

y

y

y

y

y

s

s

r

-

=






(25)

In (25) if the variables y1 and y2 represent complex signals, the correlation coefficient ( denotes the complex envelope correlation coefficient. Following are the correlation matrices for all five models, for both transmit and receive side.

Model A correlation matrices (Tx and Rx)
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Model B correlation matrices (Tx and Rx)
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Model C correlation matrices (Tx and Rx)
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Model D correlation matrices (Tx and Rx)
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Model E correlation matrices (Tx and Rx)
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7.2 Channel Capacity Results
Results missing (to be included)
Channel capacity is defined as the highest transfer rate of information that can be sent with arbitrary low probability of error. We assume that the channel is known only at the receiver and that equal power is radiated from each transmitting antenna. For the nt transmit antennas with equal transmit power and nr receiving antennas the generalized formula for the theoretical capacity, C, can be derived [1]

                                            C = log2 det [ I  + (r/nt) HH† ]    bps/Hz                                    (26)

where I is an nr x nr identity matrix, H is an nr x nt matrix, H† is its transpose conjugate, and r

is the average signal-to-noise ratio (SNR).

Figure 5 shows cumulative distribution functions (CDF) for all five models assuming r = 15 dB and 1000 channel realizations.  

                                                                Figure Missing
Figure 5. CDFs of channel capacity for all five models A-E

8. Conclusion

In this document we proposed a set of channel models applicable to indoor MIMO WLAN systems. The channel models are an extension of the SISO WLAN channel models proposed by Medbo et. al. [2,3]. The newly developed models are based on the cluster modeling approach, where tap-dependent and cluster-dependent angular and power properties are characterized. Based on these parameters, an accurate time-domain MIMO channel matrix can be obtained from the Matlab program in [23], with proper antenna correlation properties.  
Appendix A – Power roll-off parameter extraction

The objective of this Appendix is to describe a method to extend the Single-Input Single-Output (SISO) indoor Power Delay Profiles (PDP) proposed in [2] so as to encompass Multiple-Input Multiple-Output (MIMO) scenarios as well. This description will successively address the identification of clusters in the above mentioned clusters and the extraction of their power roll-off coefficient, the definition of the statistical angular properties of both taps and clusters, the way to compute the correlation of a tap resulting from several overlapping clusters and the way to perform Monte Carlo simulations with the proposed model. In the appendix, one will find the proposed spatial extension of the fives models of [2].

Power roll-off parameter extraction is the iterative process that finds the power roll-off coefficients for each cluster.

It starts with one of the five original models [2] that gives the channel gain 
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 at each delay (i, i=1, …, Nmax. For the Medbo models, Nmax = 18. The clusters are separated such that

· Rule#1: the tap separation (in time) is constant within each cluster. It is interesting to observe that in the Medbo models the power roll-off within each cluster follows an exponential power decay law.

· Rule#2: the clusters which are the outcome of the iterative process aimed at computing the power roll-off parameters should also obey the exponential power decay law. It has been observed that, in Medbo Model B, a blind application of Rule#1 could lead to the definition of clusters whose power roll-off was actually increasing. Rule#2 is aimed at avoiding this situation. Its fulfilment requires in Medbo Model B to gather the four last taps, whose separation in time is not exactly constant, into the same cluster.

· Rule#3: the Line-of-Sight component of a Rician profile (Medbo Model D) is handled as being a cluster with a single tap.

The power azimuth within each cluster is assumed to follow a Laplacian distribution and is associated with a different mean angle of arrival (AoA) and a different composite angular spread (AS), i.e. different mean and variance of the Laplacian distribution (the Laplacian distribution agrees with results reported in the literature [5,6,10]). 

This process has been implemented in Matlab, and we illustrate it with figures as an example. In this example the original taps are given as solid arrows with height proportional to the tap gain, the horizontal axis is excess delay, different clusters are assigned different colors to illustrate the fact that they correspond to different directional characteristics. 

Next we describe the Matlab program functions:

Let's affect the working variable 
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 with the original gains of the Medbo model 
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k=1

Step 1: Do a least squares fit for cluster k.

We approximate the power roll-off law with an exponential power delay profile, i.e. with a function of the form 
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is the power of the i-th tap in the current cluster k, 
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 are the curve fitting parameters. 
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 are given in dB, the time delays are given in nanoseconds (nsec) and the units of 
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 are dB/nsec.

If this was not the last cluster proceed. Else, break.

Step 2: Extend the cluster

Following the power roll-off law found in Step 1, extend the power roll-off at taps spaced with the same separation as the one that the original cluster had. We stop introducing these extended taps when their power would be lower than the lowest allowable tap power for that profile. The original taps remain unaltered and the extensions are shown with thin shaded arrows.

Step 3: Integrate energy

Since the taps of the original model are given at specific excess delays and since we are willing to preserve this spacing in the delay domain, we need to find how much energy of the extended taps corresponds to the each of the original taps of the following clusters. These are shown as ‘fat’ shaded arrows because they result from the integration of one (or possibly more) thin shaded arrows. Let the fat arrows be denoted as 
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 for all delays 
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Step 4: Subtract energy

If the energy of the accumulated taps is lower than the energy of the original model taps, then it is subtracted (here the term ‘energy’ indicates that the tap powers have been appropriately integrated to account for the varying tap delay spacing). In the angular domain, this corresponds to having energy arriving both from the direction of the cluster to which the current tap belongs, and from the direction of the previous cluster(s). So
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Because we have could have 3 or more clusters overlapping and energy might have to be subtracted more than once, we operate on the working variable C, instead of the initial channel gains A. This process is repeated for all clusters in the profile. Note that the subtraction is done in linear scale, not in dB.

The subtracted energy is denoted with arrows with dashed borders, while the result of the subtraction (remaining energy) is shown with patterned arrows.

k=k+1

Repeat steps 1-4 until break in step 1 (because last cluster reached).

Let us see how this procedure can be illustrated graphically using the following model as an example.
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Figure 1: Original model
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Figure 2: Step 1 (least squares fit) for cluster 1

[image: image63]Figure 3: Step 2 (tap extension) for cluster 1
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Figure 4: Step 3 (energy integration) for cluster 1
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Figure 5: Step 4 (energy subtraction) for cluster 2
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Figure 6: Step 1 (least squares fit) for cluster 2
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Figure 7: Step 2 (tap extension) for cluster 2
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Figure 8: Step 3 (energy integration) for cluster 2
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Figure 9: Step 4 (energy subtraction) for cluster 3


[image: image70]Figure 10: Step 1 (least squares fit) for cluster 3
Appendix B – Tap and cluster angular properties

We are going to assume that all the taps within a cluster are characterized by probability functions of the same form f, and we constrain them to have the same variance 
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, however we allow them to have different means 
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The angular distribution of the cluster is then
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Pi is the power assigned to tap i, and Ptotal is the total power of the cluster:
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If we assume exponential power roll off over regularly spaced taps, then
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 where N is the number of taps in the cluster.

In general let us define the scaling parameters 
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. Specifically in the case of exponential power roll-off 
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Assume that the goal is to match the first and second order moments, i.e. that we want to impose a certain mean angle of arrival and angular spread on 
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Calculation of the mean
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The constraint 
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 defines a hyper-plane in the N-dimensional space 
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Calculation of the variance
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To derive the last form of the expression we have used the fact that all the taps are assumed to have the same angular spread. The variance constraint can be written as


[image: image83.wmf]2

,

0

1

2

,

2

0

2

i

N

i

i

i

tot

J

b

J

s

J

s

å

=

=

-

+


and therefore we have a second constraint on the mean angles of arrival of the taps.

It is interesting to point out that the solution 
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 (same statistical characteristics per tap as per cluster) always satisfies the constraints, however it is not unique.

Appendix C – Extended Medbo Model A

	
	Tap index
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18

	
	Excess delay [ns]
	0
	10
	20
	30
	40
	50
	60
	70
	80
	90
	110
	140
	170
	200
	240
	290
	340
	390

	Cluster 1
	Power

[dB]
	0
	-0.9
	-1.7
	-2.6
	-3.5
	-4.3
	-5.2
	-6.1
	-6.9
	-7.8
	-9.0712
	-11.1991
	-13.7954
	-16.3918
	-19.3710
	-23.2017
	
	

	Mean AoA = 154.4757°
	AoA

[°]
	166.646
	172.6334
	156.1558
	150.0347
	148.4607
	109.7505
	121.8078
	152.7446
	171.0199
	155.2886
	156.0954
	159.6128
	154.2316
	149.2625
	154.386
	153.8697
	
	

	Composite AS = 18.4380°
	AS

[°]
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	
	

	Mean AoD = 333.7349°
	AoD

[°]
	346.8507
	320.9888
	345.5986
	292.1785
	342.3962
	350.6262
	311.292
	349.5338
	336.1867
	326.1379
	350.5996
	353.77
	349.6664
	19.2542
	359.4043
	325.516
	
	

	Composite AS = 19.7471
	AS

[°]
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	
	

	Cluster 2
	Power

[dB]
	
	
	
	
	
	
	
	
	
	
	-6.6756
	-9.5729
	-12.1754
	-14.7779
	-17.4358
	-21.9928
	-25.5807
	

	Mean AoA = 320.5062°
	AoA

[°]
	
	
	
	
	
	
	
	
	
	
	315.8
	315.8042
	2.6764
	273.5867
	347.9928
	323.2924
	328.8476
	

	Composite AS = 21.8956°
	AS

[°]
	
	
	
	
	
	
	
	
	
	
	5
	5
	5
	5
	5
	5
	5
	

	Mean AoD = 50.3512°
	AoD

[°]
	
	
	
	
	
	
	
	
	
	
	68.6751
	27.4382
	47.1456
	15.6474
	50.4085
	39.5665
	52.1188
	

	Composite AS = 20.4451
	AS

[°]
	
	
	
	
	
	
	
	
	
	
	5
	5
	5
	5
	5
	5
	5
	

	Cluster 3
	Power

[dB]
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	-18.8433
	-23.2381
	-25.2463
	-26.7

	Mean AoA = 248.58°
	AoA

[°]
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	239.5305
	238.1292
	251.7416
	322.5986

	Composite AS = 24.6891°
	AS

[°]
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	5
	5
	5
	5

	Mean AoD = 266.6654°
	AoD

[°]
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	249.4722
	264.9037
	318.4249
	303.1991

	Composite AS = 25.8612
	AS

[°]
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	5
	5
	5
	5


Appendix C - Extended Medbo Model B (1/2)

	
	Tap index
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18

	
	Excess delay [ns]
	0
	10
	20
	30
	50
	80
	110
	140
	180
	230
	280
	330
	380
	430
	490
	560
	640
	730

	Cluster 1
	Power

[dB]
	-2.6
	-3.0
	-3.5
	-3.9
	-4.5644
	-5.6552
	-6.9752
	-8.2952
	-9.8222
	-11.7855
	-13.9855
	-16.1855
	-18.3855
	-20.5855
	-22.9852
	
	
	

	Mean AoA = 162.9601°
	AoA

[°]
	127.5818
	158.5207
	168.2946
	219.1601
	148.2392
	174.5993
	164.8998
	156.7871
	146.8169
	174.6295
	165.4558
	160.8233
	151.3440
	162.7868
	148.0195
	
	
	

	Composite AS = 26.7406°
	AS

[°]
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	
	
	

	Mean AoD = 109.1325°
	AoD

[°]
	109.0127
	155.0036
	86.8503
	121.2069
	118.5146
	55.0095
	101.8253
	102.9032
	92.9890
	124.7515
	61.8749
	77.3237
	87.2695
	74.6816
	80.3405
	
	
	

	Composite AS = 27.9015
	AS

[°]
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	
	
	

	Cluster 2
	Power

[dB]
	
	
	
	
	-1.8681
	-3.2849
	-4.5734
	-5.8619
	-7.1920
	-9.9304
	-10.3438
	-14.3537
	-14.7671
	-18.7770
	-19.9822
	-22.4464
	
	

	Mean AoA = 243.7232°
	AoA

[°]
	
	
	
	
	215.4219
	298.6114
	242.7346
	228.0415
	232.6356
	248.199
	251.7176
	216.9336
	229.4277
	235.1307
	239.516
	172.6898
	
	

	Composite AS = 31.1942°
	AS

[°]
	
	
	
	
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	
	

	Mean AoD = 291.6602°
	AoD

[°]
	
	
	
	
	320.6981
	315.7981
	264.9743
	240.0597
	256.9901 
	317.0863
	250.6818
	337.0123
	265.3312
	284.1269
	264.5758
	270.7322
	
	

	Composite AS = 32.7862
	AS

[°]
	
	
	
	
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	
	


Appendix C - Extended Medbo Model B (2/2)

	Cluster 3
	Power

[dB]
	
	
	
	
	
	
	
	
	-7.9045
	-9.6852
	-14.2606
	-13.8128
	-18.6038
	-18.1924
	-22.8346
	
	
	

	Mean AoA = 73.6586°
	AoA

[°]
	
	
	
	
	
	
	
	
	100.9991
	63.7968
	37.0299
	33.7379
	42.3082
	65.5237
	115.7368
	
	
	

	Composite AS = 27.1777°
	AS

[°]
	
	
	
	
	
	
	
	
	5
	5
	5
	5
	5
	5
	5
	
	
	

	Mean AoD = 50.8536°
	AoD

[°]
	
	
	
	
	
	
	
	
	72.2767
	8.2047
	62.233
	58.1658
	96.8573
	38.7527
	38.016
	
	
	

	Composite AS = 28.9514
	AS

[°]
	
	
	
	
	
	
	
	
	5
	5
	5
	5
	5
	5
	5
	
	
	

	Cluster 4
	Power

[dB]
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	-20.6734
	-20.5744
	-20.7000
	-24.6000

	Mean AoA = 172.6548°
	AoA

[°]
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	213.3961
	148.3145
	169.6745
	140.8493

	Composite AS = 28.5462°
	AS

[°]
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	5
	5
	5
	5

	Mean AoD = 270.1223°
	AoD

[°]
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	280.6038
	274.819
	231.8822
	326.2361

	Composite AS = 29.4686
	AS

[°]
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	5
	5
	5
	5


Appendix C – Extended Medbo Model C (1/2)

	
	Tap index
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18

	
	Excess delay [ns]
	0
	10
	20
	30
	50
	80
	110
	140
	180
	230
	280
	330
	400
	490
	600
	730
	880
	1050

	Cluster 1
	Power

[dB]
	-3.3
	-3.6
	-3.9
	-4.2
	-4.6474
	-5.3931
	-6.2931
	-7.1931
	-8.2317
	-9.5793
	-11.0793
	-12.5793
	-14.3586
	-16.7311
	-19.9788
	
	
	

	Mean AoA = 304.4244°
	AoA

[°]
	252.3473
	329.0832
	318.4754
	341.8683
	257.0568
	301.1511
	321.2222
	308.4064
	356.0741
	291.0914
	354.6881
	302.7826
	315.5956
	276.0021
	317.5995
	
	
	

	Composite AS = 33.2826°
	AS

[°]
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	
	
	

	Mean AoD = 56.4767°
	AoD

[°]
	25.5904
	71.8642
	36.2501
	41.4398
	49.9058
	51.8931
	160.9314
	22.7117
	61.5897
	149.9837
	35.9822
	31.6412
	63.0848
	354.4689
	72.139
	
	
	

	Composite AS = 38.7578°
	AS

[°]
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	
	
	

	Cluster 2
	Power

[dB]
	
	
	
	
	-1.8242
	-2.8069
	-3.5528
	-4.4528
	-5.3076
	-7.4276
	-7.0894
	-10.3048
	-10.4441
	-13.8374
	-15.7621
	-19.9403
	
	

	Mean AoA = 167.1633°
	AoA

[°]
	
	
	
	
	213.1614
	196.2415
	148.7596
	80.5620
	151.613
	215.5459
	130.3201
	160.7522
	139.8534
	76.6022
	301.5468
	167.2596
	
	

	Composite AS = 46.9604°
	AS

[°]
	
	
	
	
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	
	

	Mean AoD = 183.5001°
	AoD

[°]
	
	
	
	
	208.3534
	95.0112
	195.5478
	212.7959
	214.9096
	201.2451
	168.0821
	185.7938
	204.7017
	243.4922
	183.7118
	198.2884
	
	

	Composite AS = 43.7531°
	AS

[°]
	
	
	
	
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	
	

	Cluster 3
	Power

[dB]
	
	
	
	
	
	
	
	
	-5.7960
	-6.7737
	-10.4758
	-9.6417
	-14.1072
	-12.7523
	-18.5033
	
	
	

	Mean AoA = 84.9886°
	AoA

[°]
	
	
	
	
	
	
	
	
	33.6647
	124.3742
	115.7943
	84.1441
	101.3577
	107.7504
	136.0386
	
	
	

	Composite AS = 39.4883°
	AS

[°]
	
	
	
	
	
	
	
	
	5
	5
	5
	5
	5
	5
	5
	
	
	

	Mean AoD = 141.9504°
	AoD

[°]
	
	
	
	
	
	
	
	
	95.9055
	167.3442
	176.0734
	164.2723
	142.105
	157.3876
	175.7435
	
	
	

	Composite AS = 34.0966°
	AS

[°]
	
	
	
	
	
	
	
	
	5
	5
	5
	5
	5
	5
	5
	
	
	


Appendix C – Extended Medbo Model C (2/2)

	Cluster 4
	Power

[dB]
	
	
	
	
	
	
	
	
	
	
	
	
	-8.8825
	-13.3195
	-18.7334
	
	
	

	Mean AoA = 221.9758°
	AoA

[°]
	
	
	
	
	
	
	
	
	
	
	
	
	206.9324
	260.1162
	234.6622
	
	
	

	Composite AS = 23.4629°
	AS

[°]
	
	
	
	
	
	
	
	
	
	
	
	
	5
	5
	5
	
	
	

	Mean AoD = 136.5628°
	AoD

[°]
	
	
	
	
	
	
	
	
	
	
	
	
	121.8181
	176.0053
	141.8338
	
	
	

	Composite AS = 23.7804°
	AS

[°]
	
	
	
	
	
	
	
	
	
	
	
	
	5
	5
	5
	
	
	

	Cluster 5
	Power

[dB]
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	-12.9472
	-14.2338
	
	

	Mean AoA = 63.665°
	AoA

[°]
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	40.5049
	94.8107
	
	

	Composite AS = 27.3867°
	AS

[°]
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	5
	5
	
	

	Mean AoD = 296.1429°
	AoD

[°]
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	275.9985
	323.2332
	
	

	Composite AS = 24.0115°
	AS

[°]
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	5
	5
	
	

	Cluster 6
	Power

[dB]
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	-16.3
	-21.2

	Mean AoA = 269.2786°
	AoA

[°]
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	253.9274
	316.7185

	Composite AS = 27.482°
	AS

[°]
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	5
	5

	Mean AoD = 84.8383°
	AoD

[°]
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	99.6363
	39.108

	Composite AS = 26.6085°
	AS

[°]
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	5
	5


Appendix C – Extended Medbo Model D (1/3)

	
	Tap index
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18

	
	Excess delay [ns]
	0
	10
	20
	30
	50
	80
	110
	140
	180
	230
	280
	330
	400
	490
	600
	730
	880
	1050

	Cluster 1
	Power

[dB]
	0
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Mean AoA = 45°
	AoA

[°]
	45
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Composite AS = 35°
	AS

[°]
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Mean AoD = 45 °
	AoD

[°]
	45
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Composite AS = 
	AS

[°]
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Cluster 2
	Power

[dB]
	
	-10.0000
	-10.3000
	-10.6000
	-11.0474
	-11.7931
	-12.6931
	-13.5931
	-14.6371
	-15.9793
	-17.4793
	-18.9793
	-20.7586
	-23.1311
	-26.3788
	
	
	

	Mean AoA = 69.8125°
	AoA

[°]
	
	42.6958
	76.8408
	142.7898
	51.1934
	82.5427
	48.9202
	58.9212
	40.4445
	70.2553
	3.4779
	69.4643
	89.9798
	64.8432
	53.7695
	
	
	

	Composite AS = 34.4239°
	AS

[°]
	
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	
	
	

	Mean AoD = 139.638°
	AoD

[°]
	
	208.5864
	129.9123
	95.8493
	130.1839
	156.9079
	136.712
	138.0347
	45.5993
	138.8145
	172.7297
	162.107
	148.3352
	140.3911
	120.373
	
	
	

	Composite AS = 40.6025° 
	AS

[°]
	
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	
	
	

	Cluster 3
	Power

[dB]
	
	
	
	
	-8.2242
	-9.0528
	-9.9528
	-10.8528
	-11.7072
	-13.8478
	-13.5348
	-16.7764
	-16.9452
	-20.3795
	-22.3534
	-27.1281
	
	

	Mean AoA = 233.5275°
	AoA

[°]
	
	
	
	
	230.8113
	212.0278
	240.1067
	268.3928
	171.0819
	346.1935
	199.6969
	282.978
	214.4647
	209.0362
	276.3747
	204.0853
	
	

	Composite AS = 40.5022°
	AS

[°]
	
	
	
	
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	
	

	Mean AoD = 240.6583°
	AoD

[°]
	
	
	
	
	280.2179
	187.8347
	283.9894
	186.6995
	190.4158
	281.8153
	253.4861
	265.676
	261.3655
	304.0844
	276.3525
	272.576
	
	

	Composite AS = 44.9177° 
	AS

[°]
	
	
	
	
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	
	


Appendix C – Extended Medbo Model D (2/3)

	Cluster 4
	Power

[dB]
	
	
	
	
	
	
	
	
	-12.1964
	-13.1564
	-16.7786
	-15.9811
	-20.4031
	-19.0101
	-24.7060
	-26.5976
	
	

	Mean AoA = 282.2856°
	AoA

[°]
	
	
	
	
	
	
	
	
	318.9201
	267.5696
	285.034
	203.8138
	340.9729
	283.6523
	256.3295
	264.0007
	
	

	Composite AS = 39.7143°
	AS

[°]
	
	
	
	
	
	
	
	
	5
	5
	5
	5
	5
	5
	5
	5
	
	

	Mean AoD = 119.3561°
	AoD

[°]
	
	
	
	
	
	
	
	
	107.2554
	178.5724
	53.2223
	78.0038
	120.9579
	108.4593
	201.765
	184.2837
	
	

	Composite AS = 44.0073° 
	AS

[°]
	
	
	
	
	
	
	
	
	5
	5
	5
	5
	5
	5
	5
	5
	
	

	Cluster 5
	Power

[dB]
	
	
	
	
	
	
	
	
	
	
	
	
	-15.2445
	-19.7603
	-25.2355
	
	
	

	Mean AoA = 263.8942°
	AoA

[°]
	
	
	
	
	
	
	
	
	
	
	
	
	263.6709
	284.45
	193.6027
	
	
	

	Composite AS = 21.6545°
	AS

[°]
	
	
	
	
	
	
	
	
	
	
	
	
	5
	5
	5
	
	
	

	Mean AoD = 348.0849°
	AoD

[°]
	
	
	
	
	
	
	
	
	
	
	
	
	331.9687
	24.9298
	18.927
	
	
	

	Composite AS = 24.6078° 
	AS

[°]
	
	
	
	
	
	
	
	
	
	
	
	
	5
	5
	5
	
	
	

	Cluster 6
	Power

[dB]
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	-19.2793
	-21.6504
	-25.0036
	

	Mean AoA = 115.3453°
	AoA

[°]
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	85.9242
	127.16
	199.6978
	

	Composite AS = 39.6946°
	AS

[°]
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	5
	5
	5
	

	Mean AoD = 50.0383°
	AoD

[°]
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	59.388
	3.8574
	115.0574
	

	Composite AS = 36.8788°
	AS

[°]
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	5
	5
	5
	


Appendix C – Extended Medbo Model D (3/3)

	Clu ster 7
	Power

[dB]
	
	
	
	
	
	
	
	
	
	
	
	 
	
	
	
	
	-26.5548
	-27.6000

	Mean AoA = 143.431°
	AoA

[°]
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	116.0443
	178.2697

	Composite AS = 31.3348°
	AS

[°]
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	5
	5

	Mean AoD = 314.9165°
	AoD

[°]
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	340.5604
	282.2948

	Composite AS = 29.4897°
	AS

[°]
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	5
	5


Appendix C – Extended Medbo Model E (1/2)

	
	Tap index
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18

	
	Excess delay [ns]
	0
	10
	20
	40
	70
	100
	140
	190
	240
	320
	430
	560
	710
	880
	1070
	1280
	1510
	1760

	Cluster 1
	Power

[dB]
	-4.9
	-5.1
	 -5.2 
	-5.4410
	-5.8149
	-6.2649
	-6.7884
	-7.4615
	-8.2115
	-9.1781
	-10.5908
	-12.3805
	-14.4684
	-16.8547
	-19.07
	
	
	

	Mean AoA = 278.8470°
	AoA

[°]
	286.6401
	359.4242
	9.0857
	142.8135
	276.773
	285.4516
	248.2183
	292.8891
	312.5784
	208.5826
	222.4923
	251.1836
	272.2969
	168.851
	231.0657
	
	
	

	Composite AS = 66.5703°
	AS

[°]
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	
	
	

	Mean AoD = 261.4363°
	AoD

[°]
	300.0575
	280.8147
	218.0454
	218.1081
	2.3426
	236.5473
	277.1004
	288.1454
	296.1742
	109.9208
	211.7947
	255.8834
	171.1455
	299.9609
	121.7108
	
	
	

	Composite AS = 57.3116
	AS

[°]
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	
	
	

	Cluster 2
	Power

[dB]
	
	
	
	-2.6275
	-3.1950
	-3.8793
	-4.4806
	-6.2842
	-5.5581
	-7.7986
	-10.0752
	-11.8031
	-15.3453
	-18.0825
	
	
	
	

	Mean AoA = 138.6095°
	AoA

[°]
	
	
	
	87.0957
	157.807
	193.597
	146.7827
	103.4799
	119.776
	190.3872
	255.2108
	297.1455
	124.3463
	182.0015
	
	
	
	

	Composite AS = 54.1153°
	AS

[°]
	
	
	
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	
	
	
	

	Mean AoD = 124.8345°
	AoD

[°]
	
	
	
	158.8441
	122.368
	196.4408
	99.8697
	50.6864
	54.413
	125.9409
	97.6148
	144.864
	159.7329
	84.7008
	
	
	
	

	Composite AS = 46.937 
	AS

[°]
	
	
	
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	5
	
	
	
	

	Cluster 3
	Power

[dB]
	
	
	
	
	
	
	-4.3490
	-4.6358
	-7.2689
	-8.5907
	-12.3097
	-13.3736
	-19.4226
	
	
	
	
	

	Mean AoA = 298.134°
	AoA

[°]
	
	
	
	
	
	
	305.231
	329.2409
	214.1191
	323.139
	282.1011
	343.8194
	108.5057
	
	
	
	
	

	Composite AS = 44.8669°
	AS

[°]
	
	
	
	
	
	
	5
	5
	5
	5
	5
	5
	5
	
	
	
	
	

	Mean AoD = 356.9121°
	AoD

[°]
	
	
	
	
	
	
	312.8445
	42.0589
	0.5141
	344.0166
	33.7395
	0.9365
	306.4040
	
	
	
	
	

	Composite AS = 37.1407
	AS

[°]
	
	
	
	
	
	
	5
	5
	5
	5
	5
	5
	5
	
	
	
	
	


Appendix C – Extended Medbo Model E (1/2)

	Cluster 4
	Power

[dB]
	
	
	
	
	
	
	
	
	
	-2.4047
	-3.9649
	-7.2082
	
	
	
	
	
	

	Mean AoA = 90.4661°
	AoA

[°]
	
	
	
	
	
	
	
	
	
	106.255
	53.2052
	121.374
	
	
	
	
	
	

	Composite AS = 27.9905°
	AS

[°]
	
	
	
	
	
	
	
	
	
	5
	5
	5
	
	
	
	
	
	

	Mean AoD = 174.5461°
	AoD

[°]
	
	
	
	
	
	
	
	
	
	171.8069
	152.8647
	228.5776
	
	
	
	
	
	

	Composite AS = 25.8627
	AS

[°]
	
	
	
	
	
	
	
	
	
	5
	5
	5
	
	
	
	
	
	

	Cluster 5
	Power

[dB]
	
	
	
	
	
	
	
	
	
	
	
	-7.8303
	-6.7369
	-8.2383
	-11.1692
	-13.4
	-17.4
	-20.9

	Mean AoA = 320.18°
	AoA

[°]
	
	
	
	
	
	
	
	
	
	
	
	312.8882
	316.5662
	64.6901
	326.1956
	139.0558
	73.1171
	148.4194

	Composite AS = 81.8273°
	AS

[°]
	
	
	
	
	
	
	
	
	
	
	
	5
	5
	5
	5
	5
	5
	5

	Mean AoD = 321.7817°
	AoD

[°]
	
	
	
	
	
	
	
	
	
	
	
	303.7648
	69.1201
	253.5686
	250.2892
	254.93
	279.5197
	288.5935

	Composite AS = 75.6771
	AS

[°]
	
	
	
	
	
	
	
	
	
	
	
	5
	5
	5
	5
	5
	5
	5
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